Tip rates
In this vignette we will calculate the diversification rates at the tips of the phylogeny.
Tree file
First, we load the necessary modules and read in the tree file. We assume that we know the total number of extant species, and using that we can calculate the sampling fraction.
using Pesto
using CairoMakie
phy = readtree(Pesto.path("primates.tre"))
sampling_fraction = 0.62
primates = SSEdata(phy, sampling_fraction)
Model setup
Let's use the standard Pesto.jl
model again, with LogNormal quantiles and maximum-likelihood shift rate ($\eta$).
model, rates = pesto(primates)
Tip rates
In order to calculate the values of the rates at the present, we need to evalute the following expressions
\[ \begin{aligned} \lambda_\text{tip} &= \mathbf{S}(t=0)^\top \boldsymbol{\lambda}\\ \mu_\text{tip} &= \mathbf{S}(t=0)^\top \boldsymbol{\mu}\\ r_\text{tip} &= \mathbf{S}(t=0)^\top (\boldsymbol{\lambda}-\boldsymbol{\mu})\\ \epsilon_\text{tip} &= \mathbf{S}(t=0)^\top (\boldsymbol{\mu} \oslash \boldsymbol{\lambda}), \end{aligned}\]
where $\mathbf{S}(t=0)$ are the posterior state probabilities at time $t=0$, i.e. the present. We can compute the tip rates conveniently with the tip_rates()
function, which gives a DataFrame
as a result.
df = tip_rates(model, primates)
df[1:5,:]
Row | lambda | mu | netdiv | relext | species |
---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | String | |
1 | 0.21546 | 0.0885427 | 0.126917 | 0.446558 | Galago_matschiei |
2 | 0.217648 | 0.0884109 | 0.129237 | 0.437607 | Euoticus_pallidus |
3 | 0.217648 | 0.0884109 | 0.129237 | 0.437607 | Euoticus_elegantulus |
4 | 0.215278 | 0.0881728 | 0.127105 | 0.446515 | Galagoides_zanzibaricus |
5 | 0.215278 | 0.0881728 | 0.127105 | 0.446515 | Galagoides_demidoff |
Distribution
If we plot the tip rates as a histogram, we can see that the primates tips are bimodally distributed. The high-rate species are the Old World Monkeys, and the low-rate species is everything else in the tree.
f = Figure(resolution = (300, 600))
axs = []
colors = [:blue, :red, :green, :orange]
for (i, rate) in enumerate([:lambda, :mu, :netdiv, :relext])
ax = Axis(f[i,1],
xgridvisible = false,
ygridvisible = false,
xlabel = string("Tip rate (", rate, ")"),
ylabel = "Frequency")
hist!(ax, df[!,rate], bins=30, color = colors[i])
end
rowgap!(f.layout, 5.0)
f