Tip rates

In this vignette we will calculate the diversification rates at the tips of the phylogeny.

Tree file

First, we load the necessary modules and read in the tree file. We assume that we know the total number of extant species, and using that we can calculate the sampling fraction.

using Pesto
using CairoMakie

phy = readtree(Pesto.path("primates.tre"))
sampling_fraction = 0.62
primates = SSEdata(phy, sampling_fraction)

Model setup

Let's use the standard Pesto.jl model again, with LogNormal quantiles and maximum-likelihood shift rate ($\eta$).

model, rates = pesto(primates)

Tip rates

In order to calculate the values of the rates at the present, we need to evalute the following expressions

\[ \begin{aligned} \lambda_\text{tip} &= \mathbf{S}(t=0)^\top \boldsymbol{\lambda}\\ \mu_\text{tip} &= \mathbf{S}(t=0)^\top \boldsymbol{\mu}\\ r_\text{tip} &= \mathbf{S}(t=0)^\top (\boldsymbol{\lambda}-\boldsymbol{\mu})\\ \epsilon_\text{tip} &= \mathbf{S}(t=0)^\top (\boldsymbol{\mu} \oslash \boldsymbol{\lambda}), \end{aligned}\]

where $\mathbf{S}(t=0)$ are the posterior state probabilities at time $t=0$, i.e. the present. We can compute the tip rates conveniently with the tip_rates() function, which gives a DataFrame as a result.

df = tip_rates(model, primates)
df[1:5,:]
5×5 DataFrame
Rowlambdamunetdivrelextspecies
Float64Float64Float64Float64String
10.215460.08854270.1269170.446558Galago_matschiei
20.2176480.08841090.1292370.437607Euoticus_pallidus
30.2176480.08841090.1292370.437607Euoticus_elegantulus
40.2152780.08817280.1271050.446515Galagoides_zanzibaricus
50.2152780.08817280.1271050.446515Galagoides_demidoff

Distribution

If we plot the tip rates as a histogram, we can see that the primates tips are bimodally distributed. The high-rate species are the Old World Monkeys, and the low-rate species is everything else in the tree.

f = Figure(resolution = (300, 600))

axs = []
colors = [:blue, :red, :green, :orange]
for (i, rate) in enumerate([:lambda, :mu, :netdiv, :relext])
    ax = Axis(f[i,1],
        xgridvisible = false,
        ygridvisible = false,
        xlabel = string("Tip rate (", rate, ")"),
        ylabel = "Frequency")

    hist!(ax, df[!,rate], bins=30, color = colors[i])
end
rowgap!(f.layout, 5.0)
f
Example block output