Functions
List of available functions
Pesto.birth_death_shift
— Methodbirth_death_shift(model, data)
Calculates average branch rates under the birth-death-shift model with a finite state space.
Example:
using Pesto
phy = readtree(Pesto.path("bears.tre"))
ρ = 1.0
data = make_SSEdata(phy, "", ρ; include_traits = false)
λ = [0.1, 0.2]
μ = [0.05, 0.15]
η = 0.05
model = SSEconstant(λ, μ, η)
res = birth_death_shift(model, data)
Pesto.Econstant
— Methodfrom Morlon et al. 2011 [PNAS], eq. S4
\[E(t) = 1 - \frac{\exp(t(\lambda - \mu))}{\frac{1}{\rho} + \frac{\lambda}{\lambda -\mu} \Big ( \exp((\lambda - \mu)t) - 1 \Big)}\]
Pesto.ψ
— MethodEquation S5 in Morlon et al. 2011 [PNAS]
\[\psi(s, t) = e^{(\lambda - \mu)(t - s)} [ 1 + \frac{\frac{\lambda}{\lambda - \mu}(e^{t(\lambda - \mu)} - e^{s(\lambda-\mu)})}{\frac{1}{\rho} + \frac{\lambda}{\lambda - \mu} \times (e^{s(\lambda-\mu)}-1)}]^{-2}\]
We use this one, simplified where s = 0
\[\psi(t) = \frac{e^{t(\lambda - \mu)}}{ [ 1 + \frac{\rho \lambda}{\lambda - \mu}(e^{t(\lambda - \mu)} - 1)]^{2}}\]
Example:
ρ = 1.0
λ = 1.0
μ = 0.5
t = 0.1
ψ(t, λ, μ, ρ)
Pesto.lp
— Methodlp(λ, μ, data)
From Louca and Pennell 2020 (Nature), eq. S28
\[L = \frac{\rho^{n+1}} {\lambda (1 - E(t_1))^2} \times \prod_{i=1}^n \lambda \times \psi(0, t_i) \\ E(t) = 1 - \frac{\exp(\lambda - \mu)t}{\frac{1}{\rho} + \frac{\lambda}{\lambda -\mu} \Big ( \exp((\lambda - \mu)t) - 1 \Big)} \\ \psi(t) = \frac{e^{t(\lambda - \mu)}}{ [ 1 + \frac{\rho \lambda}{\lambda - \mu}(e^{t(\lambda - \mu)} - 1)]^{2}}\]
Logged:
\[\log(L) = (n+1) \log(\rho) + \log(\psi(t_1)) - \log(\lambda) - 2 \log(1 - E(t_1)) + \sum_{i=1}^n \log(\lambda) + \log(\psi(t_i))\]
Example:
λ = 1.0
μ = 0.5
phy = readtrees(Pesto.path("bears.tre"))
ρ = 1.0
data = make_SSEdata2(phy, ρ)
lp(λ, μ, data)
Pesto.estimate_constant_bdp
— Methodestimate_constant_bdp(data::SSEdata[; xinit = [0.11, 0.09], lower = [0.0001, 0.0001], upper = [20.0, 20.0]])
Estimates the speciation and extinction rate under the reconstructed birth-death process with time-homogeneous rates.
Example:
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.67
data = make_SSEdata2(phy, ρ)
λml, μml = estimate_constant_bdp(data)
Pesto.optimize_eta
— Methodoptimize_eta(λ, μ, data)
Finds the maximum-likelihood parameter value for η (the transition rate) under the birth-death-shift model with a finite state space, conditional on λ and μ.
Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
data = make_SSEdata2(phy, ρ)
λ = [0.1, 0.2, 0.3, 0.1, 0.2, 0.3, 0.1, 0.2, 0.3]
μ = [0.09, 0.09, 0.09, 0.19, 0.19, 0.19, 0.29, 0.29, 0.29]
ηml = optimize_eta(λ, μ, data)
#model = SSEconstant(λ, μ, ηml)
11
Pesto.make_descendants
— Methodmake_descendants(data)
takes node indices as input, and returns edge indices Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
data = make_SSEdata(phy, ρ)
make_descendants(data)
with result
Dict{Int64, Vector{Any}} with 232 entries:
402 => [330, 331]
413 => [357, 360]
425 => [380, 381]
⋮ => ⋮
Pesto.make_ancestors
— Methodmake_ancestors(data)
takes node indices as input, and returns edge indices
Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
data = make_SSEdata(phy, ρ)
make_ancestors(data)
with result
Dict{Int64, Int64} with 464 entries:
56 => 115
35 => 71
425 => 379
⋮ => ⋮
Pesto.lrange
— Methodlrange(from, to, length)
Similar to range
, but with proportional spacing.
Example:
using Pesto
lrange(0.001, 100.0, 6)
with result
6-element Vector{Float64}:
0.0010000000000000002
0.010000000000000004
0.10000000000000002
1.0000000000000004
10.000000000000002
100.00000000000004
Pesto.allpairwise
— Methodallpairwise(λ, μ)
Example:
using Pesto
lambda = [0.2, 0.3]
mu = [0.05, 0.10, 0.15, 0.20]
λ, μ = allpairwise(lambda, mu)
with result
([0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3], [0.05, 0.05, 0.1, 0.1, 0.15, 0.15, 0.2, 0.2])
Pesto.writenewick
— Methodwritenewick(filename, data, rates)
writes a newick file with the rate values as comments
Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
primates = SSEdata(phy, ρ)
λ = [0.1, 0.2, 0.3, 0.4, 0.20]
μ = [0.05, 0.15, 0.05, 0.15, 0.25]
η = 1 / tree_length
rates = birth_death_shift(model, primates)
writenewick("/tmp/newick.tre", primates, rates)
Pesto.make_SSEdata
— Methodmake_SSEdata(phy, ρ)
Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
data = make_SSEdata(phy, ρ)
Pesto.make_descendants_nodes
— Methodmake_descendants_nodes(data)
takes node indices as input, and returns node indices Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
ρ = 0.635
data = make_SSEdata(phy, ρ)
make_descendants_nodes(data)
Pesto.readtree
— Methodreadtree("/path/to/phylo.tre")
reads a NEXUS or Newick file using RCall and the R-package ape
Example:
using Pesto
phy = readtree(Pesto.path("primates.tre"))
display(phy)
Pesto.postorder_nosave
— Methodpostorder_nosave(model::SSEconstant, data::SSEdata, E, alg = OrdinaryDiffEq.Tsit5())
TBW